此应用案例对于复摆颚式破碎机及其他工业产品的设计有实际的指导意义。 颚式破碎机是矿山生产、建设用料加工及聚合化工生产的主要设备之一,被广泛地应用于各种金属与非金属矿山、化工矿物以及水泥、建材等物料的生产加工中。 近年来,随着矿山生产和建材加工中一些新理论的提出,用户希望散体矿石能够在破碎阶段尽可能地得到粒度更细、块度更好的产品。 此外,随着全球矿产贫化现象的出现,在保持或增加各种金属与非金属矿产量的前提下,要求处理的原矿量大大增加,这对破碎设备提出更高的要求,也面临更大的挑战。 无疑,现行落后的颚式破碎机不能承担新时期的生产任务,必须开发高性能、低能耗的新型颚式破碎机。
然而国内对颚式破碎机的仿真优化设计的研究主要限于对特定型号的颚式破碎机编写相应程序进行优化设计,这些程序大多重用性差,只能解决特定型号中的特定问题。 然而破碎机的优化内容是根据不同客户要求需要经常变化的,因而仿真优化设计工作经常要重复大量而繁锁的编写程序工作,费时费力,而且还延长了产品开发周期。 本文尝试利用先进的运动学与动力学仿真设计工具对新型颚式破碎机进行快速开发,对机构设计参数进行仿真优化设计,从而大大减小了仿真设计的工作量,缩短了产品开发周期,提高了仿真模型重用率。 一、优化仿真模型的建立 1.颚式破碎机工作原理及其结构尺寸对破碎机性能的影响 颚式破碎机是典型的曲柄摇杆机构,其机构图如图1所示。 图1 颚式破碎机机构简图 图1中四杆机构中AB曲柄为破碎机偏心轴,BD连杆为破碎机动颚,CD摇杆为破碎机肘板,EF为破碎机定颚。 增大曲柄AB的长度,将增大破碎动颚上各点的水平行程值,从而提高破碎机生产能力,但另一方面也会增加破碎机功耗,恶化破碎腔受力状况。
减小A点相对于E点的高度(减小悬挂高度h),可增大动颚上各点的水平行程,减小破碎机高度,减轻破碎机重量,减小动颚上各点行程特性系数,从而大大提高破碎机工作性能。 减小连杆长度则有利于增大动颚下端水平行程,减小行程特性系数,对提高生产能力和延长颚板使用寿命都是极为有利的。 但过短的连杆给机架结构设计带来困难并使动颚受力恶化。
连杆倾角对应于破碎腔啮角,减小破碎腔啮角有利于提高破碎机产量,改善破碎作用力并有利于采用新的破碎原理(如层压破碎原理)。
但啮角过小,将使破碎机高度增大,机重增加,机架长度加长。 传动角的大小对破碎机性能影响很大,增大传动角有利于改善破碎机受力,提高散体物料破碎力,但同时也会减小动颚下端水平行程,增加垂直行程,从而加大动颚衬板磨损,减小衬板寿命。
此外,用户对产品需求的多样化、个性化对现代产品设计提高更高的要求。 本文所讨论的新产品PF1600X2100复摆颚式破碎机是某用户对厂家提出的新要求。
PF1600X2100大型复摆颚式破碎机的单重达到150吨,机高超过4米,设计生产此种大型颚式破碎机在国内尚属首次,对设计与制造带来机遇和挑战。 为对PF1600X2100破碎机的设计生产达到一次成功,程度地减小产品潜在的影响因素,采用计算机仿真技术对PF1600X2100进行仿真优化设计。
(2)机构优化模型的建立 机构优化设计包括设计变量的确定,目标函数的建立以及设计约束的确定,此三部分组成了机构优化设计的数学模型。 所以在颚式破碎机的优化设计中,应以颚式破碎机偏心轴偏心距和动颚上、下端行程特性值为目标函数,以破碎机的功耗、产量、机重、衬板磨损以及破碎腔性能为优化目标函数,另外还要以以上七种优化目标的某几种的通过加权因子组合函数为优化目标函数。
其中通过加权因子组合变量优化时,由于加权因子的确定比较困难,故常常以前面七种情况为目标函数进行优化设计。 其主要弊端是针对不同的设计变量、目标函数及约束方程,必须编写不同的仿真优化设计程序,这不仅要做大量类似的重复工作,而且还延长了产品的开发周期和上市时间,降低了产品的市场反映能力。
本文基于现有成熟的ADAMS虚拟产品开发软件,对PF1600X2100复摆颚式破碎机进行仿真优化设计,这不仅大大减小优化设计工作量,而且极大提高仿真分析可靠性,加快产品上市时间,提高产品竞争力。 二、ADAMS对破碎机的仿真优化设计 1.虚拟机构模型的建立 ADAMS提供非常方便的三维建模技术、结构分析技术、模型分析技术、控制系统设计与分析技术、优化仿真分析技术、利用实验数据进行建模的技术等等。
本文主要利用ADAMS/VIEW模块对PF1600X2100新型颚式破碎机进行优化仿真设计。
在优化分析之前,先建立虚拟机构模型,如图2所示。 图2 虚拟机构模型 如图2中所示,采用ADAMS中的连杆模型建立破碎机的曲柄摇杆机构,其中右上部橙色杆件为破碎机偏心轴、绿色板块是破碎机动颚部件,青色杆件为破碎机肘板,红色板块为破碎机定颚齿板。 此外,建立工作杆件之间的约束与驱动关系,右上部半圆箭头是对破碎机偏心轴施加的驱动力矩,各杆之间通过转动副相连接,其中定颚、肘座基部及曲柄中心与大地固接。 2.设计变量、目标函数及约束条件的确定 设计变量在ADAMS中的表达主要是通过给定各端点坐标值变化约束范围来实现,计算目标函数值并使之为极小,从而达到化的目的。 约束条件是通过ADAMS所提供的设计变量变化范围和传感器功能来确定的,当取值超出允许范围时,此次仿真迭代取消,进入下一仿真迭代计算。 3.仿真优化设计 在ADAMS中确定设计变量、目标函数及约束条件后,即可开始进行仿真优化设计。 仿真优化按目标函数的不同分两种情况进行,即以下端行程特性系数为目标函数和以上端行程特性系数为目标函数。 在仿真分析过程中,主要对动颚上、下端行程特性系数,上、下端水平行程,悬挂高度,连杆长度,肘板长度,破碎腔啮角和传动角等等进行跟踪记录。 以下端行程特性系数为目标函数的部分优化结果记录如图3及表1所示。 图3 仿真分析结果表1 以排料口行程特性系数代码7为优化目标函数 将颚式破碎机动颚水平行程设计得大些有利于提高破碎机产量,强化对散体物料的破碎作用。 而将将颚式破碎机动颚水平行程设计得小些则有利用减小定、动颚衬板磨损,改善破碎机受力,延长衬板使用寿命。 破碎腔啮角的大小直接关系到物料的受力状态,机架结构设计和破碎机产量,小的啮角有利于提高破碎机产量,利用先进破碎原理进行物料破碎,但破碎机高度将增加。
衡量各方面因素,结合破碎机设计经验,表1中组和第二组数据比较合理,可作为破碎机设计参考数据。 以上端行程特性系数为目标函数的优化结果如表2所示。